
1

PSYCH-UH 1004Q: Statistics for Psychology�

Class 21: Multiple comparisons - Dunn’s
correction and Tukey’s HSD

Prof. Jon Sprouse

Psychology

Quick recap of the logic of the multiple
comparisons problem

Multiple pairwise comparisons

3

When we compare two conditions to each other, we call it a pairwise
comparison. With three conditions, we have three possible comparisons:

When H0 is false, a very logical approach to figuring out how the conditions
differ from each other would be to perform a pairwise comparison for each
possible pair of conditions. This will show you which of these patterns you
have:

= and and

each of these is a pairwise comparison

This is just two examples.
But you can see how running
each of the pairwise
comparisons will show you
the full pattern. So, this is
something you will want to
do!

We call this the multiple comparisons problem

4

When an experiment contains multiple comparisons (that is, more than one
comparison), the αEW will be higher than αPC.

The issue is that αEW is probably the
error rate you care about when you
have an experiment with multiple
comparisons. You don’t want to report
that your experiment found an effect
when it did not. Imagine you are testing
3 medicines. You don’t want to say that
one of them worked when it did not!

αEW=.1426

EW error

αPC=.05 αPC=.05 αPC=.05

Basically, the multiple comparisons
problem is that you think you are
keeping your error rate low (e.g., .05),
but when you are reporting multiple
comparisons, the error rate that you
care about is αEW and it is higher than
.05.

How big of a problem is it?

5

We can actually calculate the αEW based on the αPC that you choose and the
number of comparisons:

αEW = 1 - (1 - αPC)C

Deriving this equation is not straightforward because is the probability for at
least 1 (so 1, 2, 3, etc) error. But one way to think about it is to flip it around.

The probability of making 0 errors is easy to calculate. For one comparison it is
1-αPC. So, typically .95.

For two comparisons, the probability of making 0 errors is .95 x .95 (because
that is how joint probability works for independent events).

For three comparisons, the probability of making 0 errors is .95 x .95 x .95.

We can generalize this to say that the probability of making 0 type I errors is
(1-αPC)C. Therefore the probability of not-getting-0, which means at least 1, is
the inverse:

αEW = 1 - (1 - αPC)C

Two approaches to addressing this

6

Option 1: If there is a predictable
relationship between αPC and αEW, then we
can set αPC to the rate that will give us
the αEW that we want. This what the
Dunn (a.k.a. Bonferroni) correction
does.

αEW=.1426

EW error

αPC=.05 αPC=.05 αPC=.05

αEW = 1 - (1 - αPC)C

Option 2: We can use αEW as a criterion
directly, and set that to .05. This means
deriving a new test statistic based on
αEW. This is what Tukey’s Honestly
Significant Difference does.

Option 1

Option 2

Dunn’s correction

(a.k.a. Bonferroni correction)

Selecting αPC to control αEW

8

The Dunn (a.k.a. Bonferroni) correction is straightforward to apply. You simply
change the alpha criterion that you use to claim that a result is statistically
significant.

αEW = 1 - (1 - αPC)C

select thisto control this

But how do we choose the right αPC?
Well, it turns out that there is a very
simple way to do this. We simply divide
αEW by the number of contrasts:

So, if you have 3 contrasts, and if you
want an αEW of .05, you simply divide
.05 by 3. Then you use the resulting
number as your alpha-criterion for
deciding statistical significance.

for an αEW of .05:
.05
3

= .0167

αEW

C
alpha criterion =

αEW = 1 - (1 - αPC)1

αEW = αPC

Notice that with 1 comparison,

αPC equals αEW:

Why does it work?

9

The Dunn (a.k.a. Bonferroni) correction works because the following inequality
is always true:

Now, we can notice that the quantity on
the right looks just like the equation for
experimentwise error, except αPC has
been replaced with αEW/C. So, we can
see that using αEW/C as our alpha-
criterion will give us experimentwise
error that is less than or equal to αEW.

X ≥ 1 - (1-(X/C))C

This inequality was discovered by Carlo Bonferroni. Take a look at it. It tells us
that the quantity on the right will always be less than or equal to the quantity
on the left. This is simply a mathematical fact.

desired αEW ≥ 1 - (1-(αEW/C))C We can plug αEW into this inequality,
and it tells us that our actual αEW (on
the right) will always be less than our
desired αEW.

αEW = 1 - (1 - αPC)C

.05 ≥ 1 - (1-(.05/C))C

Demonstrating that the Dunn correction works

10

Let’s do the same simulation from before with 3 pairwise comparisons per
experiment. We know that it will yield an error rate near .14. But this time, we
will use the Dunn correction to set our alpha level to .0167. If the Dunn
correction works, we should see an error rate near .05.

Step 1: Simulate 10,000 experiments with 3 comparisons.

boot.replicates=replicate(10000, expr=rnorm(150, mean=0, sd=1))

Step 2: Write a function to calculate 3 t-tests.

t.function <- function(dataset){

 t1=t.test(dataset[1:50], dataset[51:100], var.equal=T)

 t2=t.test(dataset[1:50], dataset[101:150], var.equal=T)

 t3=t.test(dataset[51:100], dataset[101:150], var.equal=T)

 return(c(t1$p.value,t2$p.value,t3$p.value))

}

Step 3: Apply the function to the simulated experiments.

experiments = apply(X=boot.replicates, MARGIN=2, FUN=t.function)

Demonstrating that the Dunn correction works

11

Step 4: Write two
functions. One that looks
for errors at p<.05, and
one that looks for errors at
p<.0167 (the Dunn
corrected alpha level).

error.uncorrected <- function(dataset){

	 errors=sum(dataset<.05)

	 return(errors>0)

}

Step 5: Apply the function to simulated t-test results.

uncorrected=apply(X=experiments, MARGIN=2, FUN=error.uncorrected)

corrected=apply(X=experiments, MARGIN=2, FUN=error.corrected)

Step 6: Count the errors for each method.

sum(uncorrected)/10000

sum(corrected)/10000

error.corrected <- function(dataset){

	 errors=sum(dataset<.0167)

	 return(errors>0)

}

And we see that the corrected error rate is
approximately .05, just like we want!

A note on the name: Dunn vs Bonferroni

12

The most common name for this method is the Bonferroni
correction. 99% of people will use that name. Carlo Bonferroni
(1892-1960) was a male mathematician who studied various
inequalities as part of his mathematical research. He did not
work on statistics (as far as I know).

If Olive Dunn invented the test, then it should be named after her. All
statistical tests are named after the statisticians who discovered them,
including correction procedures: Tukey, Scheffe, Fisher, etc. We never name
things after the mathematicians who worked out the math that is used in the
tests (This is often calculus, so it would be Euler, Leibniz, etc).

If she didn’t invent it, but just worked out its properties, then it could still be
named after her, or perhaps hyphenated: Dunn-Bonferroni (like the Holm-
Bonferroni method). I suspect the fact that it is not is because of sexism.

I, and many other people, think it should be called the Dunn
Correction. Olive Dunn (1915-2008) was a statistician who
worked out the mathematical properties of the Dunn correction
in a 1961 paper. What I cannot find out is if she was the first to
propose the correction or not. What is clear is that Carlo
Bonferroni did not propose it, because he didn’t work on
statistics. He was a pure mathematician.

The advantages of Dunn’s correction

13

Advantage 1: It definitely works. This is
obvious from the equations. But you can
also test it for yourself by modifying the R
code in the previous slides to test any
number of t-tests.

Advantage 2: It can be used for any type of test. You are most likely to use it
with t-tests, but you can also use it with any other statistical test. This is
because it works directly with p-values, not test statistics, so it is very general.
It can be used with any null hypothesis test that yields a p-value. (Dunn also
showed that you can extend it to confidence intervals.)

Advantage 3: It is conceptually straightforward, so it is widely accepted as a
method. Reviewers and readers will definitely agree that it adequately controls
the experimentwise error rate. (You should cite Dunn 1961.)

αEW ≥ 1 - (1-(αEW/C))C

αEW = 1 - (1 - αPC)C

The disadvantage of Dunn’s correction is a
severe loss of statistical power

14

The Dunn correction achieves control over αEW by shifting the alpha criterion.
We already know that shifting the alpha criterion always increases type II
errors. In other words, we lose statistical power. You can see that increasing
the comparisons will increase type II errors (reducing power):

null
hypothesis

alternative
hypothesis

type II error type I error

alpha
level

0.0

0.1

0.2

0.3

0.4

−2 0 2 4 6
z−scores

y

null
hypothesis

alternative
hypothesis

type II error type I error

alpha
level

0.0

0.1

0.2

0.3

0.4

−2 0 2 4 6
z−scores

y

1 comparison,
p=.05

10 comparisons,
p=.005. (There
are 10 comparisons
when you have 5
conditions.)

Planned vs Post-hoc comparisons

and the Dunn correction

Maybe we just look at a subset of
comparisons?

16

Given that increasing the number of comparisons decreases power, it is
tempting to only look at a subset of comparisons that are in an experiment,
rather than all of them. There are two ways to do this, and the way you choose
impacts how you have to correct your data!

For planned comparisons, you set C to the number of comparisons that you
plan to make. It works the way you expect it to!

For post-hoc comparisons, you have to set C to the total number of
comparisons. This is because post-hoc comparisons will include all of the
errors. I will show you in the next slides.

This is a comparison that you specify before running
your experiment (and crucially before looking at any
data). Basically, you have a specific hypothesis, and
decide that the best way to test it is to compare certain
levels to each other.

Planned

Comparison:

This is a comparison that you decide to run after
looking at your data. Basically, you see a difference in
your data, and are curious to know if it is significant.

Post-hoc

Comparison:

Planned comparisons

17

Let’s say you run a 3 condition experiment, and decide that there are only two
comparisons that you actually care about:

If we only look at two comparisons, and
don’t look at all at the first comparison,
we won’t see its errors. I have grayed
out its error to illustrate this.

αEW=.0975

EW error

Therefore, when we calculate the
experimentwise error, the only errors
that will influence the count are the
ones from the two comparisons that we
look at. So our αEW will be 1 - (1 - αPC)2
because we have 2 comparisons.

for an αEW of .05:
.05
2

= .025

So we can use Dunn’s correction with
C=2:

Demonstrating Dunn and Planned Comparisons

18

We can simulate this like before. We will run 3 comparisons, but only look at
the t-values for 2 of them!

Step 1: Simulate 10,000 experiments with 3 comparisons.

boot.replicates=replicate(10000, expr=rnorm(150, mean=0, sd=1))

Step 2: Write a function to calculate 3 t-tests, but only report 2 of them.

t.function <- function(dataset){

 t1=t.test(dataset[1:50], dataset[51:100], var.equal=T)

 t2=t.test(dataset[1:50], dataset[101:150], var.equal=T)

 t3=t.test(dataset[51:100], dataset[101:150], var.equal=T)

 return(c(t2$p.value,t3$p.value))

}

Step 3: Apply the function to the simulated experiments.

experiments = apply(X=boot.replicates, MARGIN=2, FUN=t.function)

Demonstrating Dunn and Planned Comparisons

19

Step 4: Write a function
that looks for errors at
p<.025 (the Dunn
corrected alpha level).

Step 5: Apply the function to simulated t-test results.

corrected=apply(X=experiments, MARGIN=2, FUN=error.corrected)

Step 6: Count the errors for each method.

sum(corrected)/10000

error.corrected <- function(dataset){

	 errors=sum(dataset<.025)

	 return(errors>0)

}

And we see that the corrected error rate is
approximately .05, just like we want!

But notice that we did this by looking at only two planned comparisons and a
C of 2. This shows that the Dunn correction works as expected with planned
comparisons.

Post-hoc comparisons

20

Let’s say you run a 3 condition experiment, and decide to look at the one
comparison that “looks significant”. What this means in practice is that you will
choose the largest effect in the three comparisons:

I will signify the ones that we choose
with orange shading. These are the
largest effects out of the three
comparisons.

αEW=.1426

EW error

But what about the experiments where
there is an error? Which comparison is
the largest? The error! By definition, the
error is the largest effect.

So, if we choose based on the largest
effect, we are guaranteed to select all of
the errors.

Post-hoc comparisons and Dunn’s correction

21

Now, let’s apply Dunn’s correction in this scenario. Our first option is to use
C=1. We are only testing 1 comparison per set of 3, so this might seem to be
reasonable.

αEW=.1426

EW error

But when we do that, we see that we
use p=.05 for our alpha criterion. That
is no correction at all. So, based on the
logic we just saw, we will find all of the
errors. Our αEW will be .1426, not .05.

This also shows us what we have to do.
We have to use C=3. If we do that, we
will get the correction that we need to
bring αEW down to the level we want to
be at.

for an αEW of .05:
.05
1

= .05

For post-hoc comparisons, you have to set C to the maximum number of
comparisons. This is because choosing comparisons post-hoc will always select
all of the errors across all of the comparisons, regardless of the number of
comparisons you choose.

Demonstrating Dunn and post-hoc comparisons

22

We can simulate this like before. We will run 3 comparisons, but only look at
the t-values for 2 of them!

Step 1: Simulate 10,000 experiments with 3 comparisons.

boot.replicates=replicate(10000, expr=rnorm(150, mean=0, sd=1))

Step 2: Write a function to calculate 3 t-tests, but only reports the smallest p-
value of the three (therefore the largest effect).

t.function <- function(dataset){

 t1=t.test(dataset[1:50], dataset[51:100], var.equal=T)

 t2=t.test(dataset[1:50], dataset[101:150], var.equal=T)

 t3=t.test(dataset[51:100], dataset[101:150], var.equal=T)

 return(min(c(t1$p.value,t2$p.value,t3$p.value)))

}

Step 3: Apply the function to the simulated experiments.

experiments = apply(X=boot.replicates, MARGIN=2, FUN=t.function)

Demonstrating Dunn and post-hoc comparisons

23

Step 4: We don’t need an error function, because we only have 1 p-value per
experiment. We can just sum up the number of p-values at the level for C=1
(.05) and the level for C=3 (.0167)

sum(experiments<.05)/10000

sum(experiments<.0167)/10000

This shows that, with post-hoc comparisons, even if you only do one
comparison out of the set of possible comparisons, you still end up with the
maximal error rate. So you need to correct using the maximal number of
comparisons (in this example, 3). Then you will get the αEW that you want.

And what we see is that the C=1 level yields an αEW that is approximately
.1425, whereas the the C=3 level yields an αEW that is approximately .05.

Tukey’s Honestly Significant Difference

Tukey’s HSD

25

John Tukey (1915-2000) is probably the person who did the
most to draw attention to the multiple comparison problem (in
addition to lots of other cool stuff in his life, including coming
up with the word “bit”). He said it was “dishonest” to not
correct for multiple comparisons, so he called his method the
“honestly significant difference”. Hence, Tukey’s HSD.

Tukey’s approach is to create a new test
statistic that takes αEW into consideration as
it is generated. This means that the p-values
that are derived from the distribution of the
test statistic will control for αEW inherently.
In other words, the p-value is αEW.

q =
|xī - xj̄|

MSW

n

studentized range statistic

0

250

500

750

0 2 4 6
q

co
un
t

nmeans=3

df=75

The statistic he created is related to t, as you
can see from the equation. It is a family of
distributions that take two parameters: the
number of conditions in the ANOVA, and the
dfW from the ANOVA. There is no built-in
function in R to generate the distribution, but
I created an empirical one here for you.

Tukey’s HSD and αEW

26

Tukey’s insight was that, if there is going to be one or more errors in an
experiment, the largest difference in the pairwise comparisons will be an error.

So, he created a null distribution for the largest
differences. This is the critical comparison in each
experiment - it is the one that is most likely an error.

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q =
|xī - xj̄|

MSW

n
0

250

500

750

0 2 4 6
q

co
un
t

nmeans=3

df=75

To generate this null distribution for the
largest differences under H0, we calculate a
statistic called q for the largest of the
pairwise comparisons over and over:

Then we use this distribution to find a p-value. We only reject H0 when we pass
.05. We will make an error 5% of the time. And this error will be an
experimentwise error because it contains every experiment that has an error!

Using Tukey’s HSD

27

Tukey’s HSD looks just like a t-test, and that is not an accident. You can use it
just like a t-test. Plug in the two means from your comparison, and derive a p-
value from the resulting test statistic (q).

The only thing to remember is that you need to calculate an ANOVA first. This
is because Tukey’s HSD uses MSW in its estimate of the standard error.

0

250

500

750

0 2 4 6
q

co
un
t

c=3

df=75

q =
|xī - xj̄|

MSW

n

studentized range statistic

So, we can approach this just like we do other tests. We can either calculate it
by hand, or we can use R.

Calculating Tukey’s HSD by hand

28

Step 1: Calculate the ANOVA. You will need MSW and dfW from this.

Step 2: Calculate the q statistic for each
comparison you want to make.

q =
|xī - xj̄|

MSW

n

Step 3: Look up the critical q statistic for
your chosen αEW. To do this, you can either
use the table in the back of the book, or use
the qtukey() function in R. You can use this
to make a Neyman-Pearson-style decision
based on your observed q from step 2.

Step 4: Look up the precise p-value of your
observed q. You can use the ptukey()
function in R.

Step 5: Make a statistical decision just like you normally do with an alpha
criterion of .05, knowing that you are controlling αEW at this level.

Calculating Tukey’s HSD using R

29

I will create a quick 3-condition data set for us to use:

Step 1: Create the ANOVA using aov() and save it to a variable name.

red=round(rnorm(10, mean=3, sd=.75), 1)

blue=round(rnorm(10, mean=5, sd=.75), 1)

green=round(rnorm(10, mean=7, sd=.75), 1)

data = tibble(group = rep(c("red", "blue", "green"), each=10),
wellbeing = c(red, blue, green))

model = aov(wellbeing~group, data=data)

Step 2: Use the function TukeyHSD() to calculate the p-values.

TukeyHSD(model)

Calculating Tukey’s HSD using R

30

The output of TukeyHSD():

It gives you the difference between means, the bounds of the confidence
intervals, and the adjusted p-values for each of the pairwise comparisons.

A quick note on corrected p-values

31

Methods like Tukey’s HSD that create a new test statistic yield p-values. These
p-values are called corrected p-values. This is because the p-value itself is
already corrected for multiple comparisons. So you the alpha-criterion that you
use will control the experimentwise error.

The p-values that our standard test statistics yield (z, t, F) are called
uncorrected p-values. This is because the alpha-criterion that you use will
not control the experimentwise error.

When you report p-values for an experimental design with more than one
pairwise comparison (so, more than two conditions), you need to say whether
the p-values are corrected or uncorrected. This matters. It matters both so
that the reader knows if you corrected for multiple comparisons, and because
corrected p-values do not tell us the probability under the null hypothesis.
They tell us the probability after correction.

Also note that the Dunn correction does not change the p-values. It changes
the alpha-criterion. So it does not yield corrected p-values. The p-values are
still uncorrected. Sometimes people will multiply the uncorrected p-values by C
to yield something like a corrected p-value because multiplying the p-value by
C is the same as dividing the alpha-criterion by C for all decisions. But the
resulting number is not really a p-value any longer because it can go above 1!
(e.g., an uncorrected p=.75 with 3 comparisons would yield p=2.25!)

