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Quick recap of the logic of the multiple 
comparisons problem



Multiple pairwise comparisons

3

When we compare two conditions to each other, we call it a pairwise 
comparison. With three conditions, we have three possible comparisons:

When H0 is false, a very logical approach to figuring out how the conditions 
differ from each other would be to perform a pairwise comparison for each 
possible pair of conditions. This will show you which of these patterns you 
have:

= and and

each of these is a pairwise comparison

This is just two examples. 
But you can see how running 
each of the pairwise 
comparisons will show you 
the full pattern. So, this is 
something you will want to 
do!



We call this the multiple comparisons problem
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When an experiment contains multiple comparisons (that is, more than one 
comparison), the αEW will be higher than αPC.

The issue is that αEW is probably the 
error rate you care about when you 
have an experiment with multiple 
comparisons. You don’t want to report 
that your experiment found an effect 
when it did not. Imagine you are testing 
3 medicines. You don’t want to say that 
one of them worked when it did not!

αEW=.1426

EW error

αPC=.05 αPC=.05 αPC=.05

Basically, the multiple comparisons 
problem is that you think you are 
keeping your error rate low (e.g., .05), 
but when you are reporting multiple 
comparisons, the error rate that you 
care about is αEW and it is higher than 
.05.



How big of a problem is it?
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We can actually calculate the αEW based on the αPC that you choose and the 
number of comparisons:

αEW = 1 - (1 - αPC)C

Deriving this equation is not straightforward because is the probability for at 
least 1 (so 1, 2, 3, etc) error. But one way to think about it is to flip it around. 

The probability of making 0 errors is easy to calculate. For one comparison it is 
1-αPC. So, typically .95.

For two comparisons, the probability of making 0 errors is .95 x .95 (because 
that is how joint probability works for independent events).

For three comparisons, the probability of making 0 errors is .95 x .95 x .95.

We can generalize this to say that the probability of making 0 type I errors is 
(1-αPC)C. Therefore the probability of not-getting-0, which means at least 1, is 
the inverse: 

αEW = 1 - (1 - αPC)C



Two approaches to addressing this
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Option 1: If there is a predictable 
relationship between αPC and αEW, then we 
can set αPC to the rate that will give us 
the αEW that we want. This what the 
Dunn (a.k.a. Bonferroni) correction 
does. 

αEW=.1426

EW error

αPC=.05 αPC=.05 αPC=.05

αEW = 1 - (1 - αPC)C

Option 2: We can use αEW as a criterion 
directly, and set that to .05. This means 
deriving a new test statistic based on 
αEW. This is what Tukey’s Honestly 
Significant Difference does.  

Option 1

Option 2



Dunn’s correction

(a.k.a. Bonferroni correction)



Selecting αPC to control αEW
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The Dunn (a.k.a. Bonferroni) correction is straightforward to apply. You simply 
change the alpha criterion that you use to claim that a result is statistically 
significant.

αEW = 1 - (1 - αPC)C

select thisto control this

But how do we choose the right αPC? 
Well, it turns out that there is a very 
simple way to do this. We simply divide 
αEW by the number of contrasts:

So, if you have 3 contrasts, and if you 
want an αEW of .05, you simply divide 
.05 by 3. Then you use the resulting 
number as your alpha-criterion for 
deciding statistical significance.

for an αEW of .05:
.05
3

= .0167

αEW

C
alpha criterion =

αEW = 1 - (1 - αPC)1

αEW = αPC

Notice that with 1 comparison,

αPC equals αEW:



Why does it work?
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The Dunn (a.k.a. Bonferroni) correction works because the following inequality 
is always true:

Now, we can notice that the quantity on 
the right looks just like the equation for 
experimentwise error, except αPC has 
been replaced with αEW/C. So, we can 
see that using αEW/C as our alpha-
criterion will give us experimentwise 
error that is less than or equal to αEW.

X ≥ 1 - (1-(X/C))C  

This inequality was discovered by Carlo Bonferroni. Take a look at it. It tells us 
that the quantity on the right will always be less than or equal to the quantity 
on the left. This is simply a mathematical fact.

desired αEW ≥ 1 - (1-(αEW/C))C  We can plug αEW into this inequality, 
and it tells us that our actual αEW (on 
the right) will always be less than our 
desired αEW.

αEW = 1 - (1 - αPC)C

.05 ≥ 1 - (1-(.05/C))C  



Demonstrating that the Dunn correction works
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Let’s do the same simulation from before with 3 pairwise comparisons per 
experiment. We know that it will yield an error rate near .14. But this time, we 
will use the Dunn correction to set our alpha level to .0167. If the Dunn 
correction works, we should see an error rate near .05.

Step 1: Simulate 10,000 experiments with 3 comparisons.

boot.replicates=replicate(10000, expr=rnorm(150, mean=0, sd=1))

Step 2: Write a function to calculate 3 t-tests.

t.function <- function(dataset){

  t1=t.test(dataset[1:50], dataset[51:100], var.equal=T)

  t2=t.test(dataset[1:50], dataset[101:150], var.equal=T)

  t3=t.test(dataset[51:100], dataset[101:150], var.equal=T)

  return(c(t1$p.value,t2$p.value,t3$p.value))

}

Step 3: Apply the function to the simulated experiments.

experiments = apply(X=boot.replicates, MARGIN=2, FUN=t.function)



Demonstrating that the Dunn correction works
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Step 4: Write two 
functions. One that looks 
for errors at p<.05, and 
one that looks for errors at 
p<.0167 (the Dunn 
corrected alpha level).

error.uncorrected <- function(dataset){

	 errors=sum(dataset<.05)

	 return(errors>0)

}

Step 5: Apply the function to simulated t-test results.

uncorrected=apply(X=experiments, MARGIN=2, FUN=error.uncorrected)


corrected=apply(X=experiments, MARGIN=2, FUN=error.corrected)

Step 6: Count the errors for each method.

sum(uncorrected)/10000

sum(corrected)/10000

error.corrected <- function(dataset){

	 errors=sum(dataset<.0167)

	 return(errors>0)

}

And we see that the corrected error rate is 
approximately .05, just like we want!



A note on the name: Dunn vs Bonferroni
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The most common name for this method is the Bonferroni 
correction. 99% of people will use that name. Carlo Bonferroni 
(1892-1960) was a male mathematician who studied various 
inequalities as part of his mathematical research. He did not 
work on statistics (as far as I know).

If Olive Dunn invented the test, then it should be named after her. All 
statistical tests are named after the statisticians who discovered them, 
including correction procedures: Tukey, Scheffe, Fisher, etc. We never name 
things after the mathematicians who worked out the math that is used in the 
tests (This is often calculus, so it would be Euler, Leibniz, etc).

If she didn’t invent it, but just worked out its properties, then it could still be 
named after her, or perhaps hyphenated: Dunn-Bonferroni (like the Holm-
Bonferroni method). I suspect the fact that it is not is because of sexism.

I, and many other people, think it should be called the Dunn 
Correction. Olive Dunn (1915-2008) was a statistician who 
worked out the mathematical properties of the Dunn correction 
in a 1961 paper. What I cannot find out is if she was the first to 
propose the correction or not. What is clear is that Carlo 
Bonferroni did not propose it, because he didn’t work on 
statistics. He was a pure mathematician.



The advantages of Dunn’s correction
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Advantage 1: It definitely works. This is 
obvious from the equations. But you can 
also test it for yourself by modifying the R 
code in the previous slides to test any 
number of t-tests.

Advantage 2: It can be used for any type of test. You are most likely to use it 
with t-tests, but you can also use it with any other statistical test. This is 
because it works directly with p-values, not test statistics, so it is very general. 
It can be used with any null hypothesis test that yields a p-value. (Dunn also 
showed that you can extend it to confidence intervals.)

Advantage 3: It is conceptually straightforward, so it is widely accepted as a 
method. Reviewers and readers will definitely agree that it adequately controls 
the experimentwise error rate. (You should cite Dunn 1961.)

αEW ≥ 1 - (1-(αEW/C))C  

αEW = 1 - (1 - αPC)C



The disadvantage of Dunn’s correction is a 
severe loss of statistical power
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The Dunn correction achieves control over αEW by shifting the alpha criterion. 
We already know that shifting the alpha criterion always increases type II 
errors. In other words, we lose statistical power. You can see that increasing 
the comparisons will increase type II errors (reducing power):

null 
hypothesis

alternative 
hypothesis

type II error type I error

alpha 
level

0.0

0.1

0.2

0.3

0.4

−2 0 2 4 6
z−scores

y

null 
hypothesis

alternative 
hypothesis

type II error type I error

alpha 
level

0.0

0.1

0.2

0.3

0.4

−2 0 2 4 6
z−scores

y

1 comparison, 
p=.05

10 comparisons, 
p=.005. (There 
are 10 comparisons 
when you have 5 
conditions.)



Planned vs Post-hoc comparisons 

and the Dunn correction



Maybe we just look at a subset of 
comparisons?
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Given that increasing the number of comparisons decreases power, it is 
tempting to only look at a subset of comparisons that are in an experiment, 
rather than all of them. There are two ways to do this, and the way you choose 
impacts how you have to correct your data!

For planned comparisons, you set C to the number of comparisons that you 
plan to make. It works the way you expect it to!

For post-hoc comparisons, you have to set C to the total number of 
comparisons. This is because post-hoc comparisons will include all of the 
errors. I will show you in the next slides.

This is a comparison that you specify before running 
your experiment (and crucially before looking at any 
data). Basically, you have a specific hypothesis, and 
decide that the best way to test it is to compare certain 
levels to each other.

Planned 

Comparison:

This is a comparison that you decide to run after 
looking at your data. Basically, you see a difference in 
your data, and are curious to know if it is significant.

Post-hoc

Comparison:



Planned comparisons
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Let’s say you run a 3 condition experiment, and decide that there are only two 
comparisons that you actually care about:

If we only look at two comparisons, and 
don’t look at all at the first comparison, 
we won’t see its errors. I have grayed 
out its error to illustrate this.

αEW=.0975

EW error

Therefore, when we calculate the 
experimentwise error, the only errors 
that will influence the count are the 
ones from the two comparisons that we 
look at. So our αEW will be 1 - (1 - αPC)2 
because we have 2 comparisons.

for an αEW of .05:
.05
2

= .025

So we can use Dunn’s correction with 
C=2:



Demonstrating Dunn and Planned Comparisons
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We can simulate this like before. We will run 3 comparisons, but only look at 
the t-values for 2 of them!

Step 1: Simulate 10,000 experiments with 3 comparisons.

boot.replicates=replicate(10000, expr=rnorm(150, mean=0, sd=1))

Step 2: Write a function to calculate 3 t-tests, but only report 2 of them.

t.function <- function(dataset){

  t1=t.test(dataset[1:50], dataset[51:100], var.equal=T)

  t2=t.test(dataset[1:50], dataset[101:150], var.equal=T)

  t3=t.test(dataset[51:100], dataset[101:150], var.equal=T)

  return(c(t2$p.value,t3$p.value))

}

Step 3: Apply the function to the simulated experiments.

experiments = apply(X=boot.replicates, MARGIN=2, FUN=t.function)



Demonstrating Dunn and Planned Comparisons
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Step 4: Write a function 
that looks for errors at 
p<.025 (the Dunn 
corrected alpha level).

Step 5: Apply the function to simulated t-test results.

corrected=apply(X=experiments, MARGIN=2, FUN=error.corrected)

Step 6: Count the errors for each method.

sum(corrected)/10000

error.corrected <- function(dataset){

	 errors=sum(dataset<.025)

	 return(errors>0)

}

And we see that the corrected error rate is 
approximately .05, just like we want!

But notice that we did this by looking at only two planned comparisons and a 
C of 2. This shows that the Dunn correction works as expected with planned 
comparisons.



Post-hoc comparisons
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Let’s say you run a 3 condition experiment, and decide to look at the one 
comparison that “looks significant”. What this means in practice is that you will 
choose the largest effect in the three comparisons:

I will signify the ones that we choose 
with orange shading. These are the 
largest effects out of the three 
comparisons.

αEW=.1426

EW error

But what about the experiments where 
there is an error? Which comparison is 
the largest? The error! By definition, the 
error is the largest effect.

So, if we choose based on the largest 
effect, we are guaranteed to select all of 
the errors.



Post-hoc comparisons and Dunn’s correction
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Now, let’s apply Dunn’s correction in this scenario. Our first option is to use 
C=1. We are only testing 1 comparison per set of 3, so this might seem to be 
reasonable.

αEW=.1426

EW error

But when we do that, we see that we 
use p=.05 for our alpha criterion. That 
is no correction at all. So, based on the 
logic we just saw, we will find all of the 
errors. Our αEW will be .1426, not .05. 

This also shows us what we have to do. 
We have to use C=3. If we do that, we 
will get the correction that we need to 
bring αEW down to the level we want to 
be at.

for an αEW of .05:
.05
1

= .05

For post-hoc comparisons, you have to set C to the maximum number of 
comparisons. This is because choosing comparisons post-hoc will always select 
all of the errors across all of the comparisons, regardless of the number of 
comparisons you choose.



Demonstrating Dunn and post-hoc comparisons

22

We can simulate this like before. We will run 3 comparisons, but only look at 
the t-values for 2 of them!

Step 1: Simulate 10,000 experiments with 3 comparisons.

boot.replicates=replicate(10000, expr=rnorm(150, mean=0, sd=1))

Step 2: Write a function to calculate 3 t-tests, but only reports the smallest p-
value of the three (therefore the largest effect).

t.function <- function(dataset){

  t1=t.test(dataset[1:50], dataset[51:100], var.equal=T)

  t2=t.test(dataset[1:50], dataset[101:150], var.equal=T)

  t3=t.test(dataset[51:100], dataset[101:150], var.equal=T)

  return(min(c(t1$p.value,t2$p.value,t3$p.value)))

}

Step 3: Apply the function to the simulated experiments.

experiments = apply(X=boot.replicates, MARGIN=2, FUN=t.function)



Demonstrating Dunn and post-hoc comparisons
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Step 4: We don’t need an error function, because we only have 1 p-value per 
experiment. We can just sum up the number of p-values at the level for C=1 
(.05) and the level for C=3 (.0167)

sum(experiments<.05)/10000

sum(experiments<.0167)/10000

This shows that, with post-hoc comparisons, even if you only do one 
comparison out of the set of possible comparisons, you still end up with the 
maximal error rate. So you need to correct using the maximal number of 
comparisons (in this example, 3). Then you will get the αEW that you want.

And what we see is that the C=1 level yields an αEW that is approximately 
.1425, whereas the the C=3 level yields an αEW that is approximately .05. 



Tukey’s Honestly Significant Difference



Tukey’s HSD
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John Tukey (1915-2000) is probably the person who did the 
most to draw attention to the multiple comparison problem (in 
addition to lots of other cool stuff in his life, including coming 
up with the word “bit”). He said it was “dishonest” to not 
correct for multiple comparisons, so he called his method the 
“honestly significant difference”. Hence, Tukey’s HSD.

Tukey’s approach is to create a new test 
statistic that takes αEW into consideration as 
it is generated. This means that the p-values 
that are derived from the distribution of the 
test statistic will control for αEW inherently. 
In other words, the p-value is αEW.

q =
|xī - xj̄|

MSW

n

studentized range statistic

0
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The statistic he created is related to t, as you 
can see from the equation. It is a family of 
distributions that take two parameters: the 
number of conditions in the ANOVA, and the 
dfW from the ANOVA. There is no built-in 
function in R to generate the distribution, but 
I created an empirical one here for you.



Tukey’s HSD and αEW
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Tukey’s insight was that, if there is going to be one or more errors in an 
experiment, the largest difference in the pairwise comparisons will be an error.

So, he created a null distribution for the largest 
differences. This is the critical comparison in each 
experiment - it is the one that is most likely an error.
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To generate this null distribution for the 
largest differences under H0, we calculate a 
statistic called q for the largest of the 
pairwise comparisons over and over:

Then we use this distribution to find a p-value. We only reject H0 when we pass 
.05. We will make an error 5% of the time. And this error will be an 
experimentwise error because it contains every experiment that has an error! 



Using Tukey’s HSD
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Tukey’s HSD looks just like a t-test, and that is not an accident. You can use it 
just like a t-test. Plug in the two means from your comparison, and derive a p-
value from the resulting test statistic (q).

The only thing to remember is that you need to calculate an ANOVA first. This 
is because Tukey’s HSD uses MSW in its estimate of the standard error.
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q =
|xī - xj̄|

MSW
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So, we can approach this just like we do other tests. We can either calculate it 
by hand, or we can use R.



Calculating Tukey’s HSD by hand
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Step 1: Calculate the ANOVA. You will need MSW and dfW from this.

Step 2: Calculate the q statistic for each 
comparison you want to make.

q =
|xī - xj̄|

MSW

n

Step 3: Look up the critical q statistic for 
your chosen αEW. To do this, you can either 
use the table in the back of the book, or use 
the qtukey() function in R. You can use this 
to make a Neyman-Pearson-style decision 
based on your observed q from step 2.

Step 4: Look up the precise p-value of your 
observed q. You can use the ptukey() 
function in R.

Step 5: Make a statistical decision just like you normally do with an alpha 
criterion of .05, knowing that you are controlling αEW at this level.



Calculating Tukey’s HSD using R
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I will create a quick 3-condition data set for us to use:

Step 1: Create the ANOVA using aov() and save it to a variable name.

red=round(rnorm(10, mean=3, sd=.75), 1)

blue=round(rnorm(10, mean=5, sd=.75), 1)

green=round(rnorm(10, mean=7, sd=.75), 1)


data = tibble(group = rep(c("red", "blue", "green"), each=10), 
wellbeing = c(red, blue, green))

model = aov(wellbeing~group, data=data)

Step 2: Use the function TukeyHSD() to calculate the p-values.

TukeyHSD(model)



Calculating Tukey’s HSD using R
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The output of TukeyHSD():

It gives you the difference between means, the bounds of the confidence 
intervals, and the adjusted p-values for each of the pairwise comparisons.



A quick note on corrected p-values
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Methods like Tukey’s HSD that create a new test statistic yield p-values. These 
p-values are called corrected p-values. This is because the p-value itself is 
already corrected for multiple comparisons. So you the alpha-criterion that you 
use will control the experimentwise error.

The p-values that our standard test statistics yield (z, t, F) are called 
uncorrected p-values. This is because the alpha-criterion that you use will 
not control the experimentwise error.

When you report p-values for an experimental design with more than one 
pairwise comparison (so, more than two conditions), you need to say whether 
the p-values are corrected or uncorrected. This matters. It matters both so 
that the reader knows if you corrected for multiple comparisons, and because 
corrected p-values do not tell us the probability under the null hypothesis. 
They tell us the probability after correction.

Also note that the Dunn correction does not change the p-values. It changes 
the alpha-criterion. So it does not yield corrected p-values. The p-values are 
still uncorrected. Sometimes people will multiply the uncorrected p-values by C 
to yield something like a corrected p-value because multiplying the p-value by 
C is the same as dividing the alpha-criterion by C for all decisions. But the 
resulting number is not really a p-value any longer because it can go above 1! 
(e.g., an uncorrected p=.75 with 3 comparisons would yield p=2.25!)


